Robust Potato Color Image Segmentation Using Adaptive Fuzzy Inference System
نویسندگان
چکیده
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and view of potato from digital camera. In the proposed algorithm, after selecting appropriate color space, distance between an image pixel and real potato pixels is computed. Furthermore, this distance feeds to a fuzzy rule-based classifier to extract potato candidate in the input image. A subtractive clustering algorithm is also used to decide on the number of rules and membership functions of the fuzzy system. To improve the performance of the fuzzy rule-based classifier, the membership functions shapes are also optimized by the GA. To segment potatoes in the input color image, an image thresholding is applied to the output of the fuzzy system, where the corresponding threshold is optimized by the GA. To improve the segmentation results, a sequence of some morphological operators are also applied to the output of thresholding stage. The proposed algorithm is applied to different databases with different backgrounds, including USDA, CFIA, and obtained potato images database from Ardabil (Iran’s northwest), separately. The correct segmentation rate of the proposed algorithm is approximately 98% over totally more than 500 potato images. Finally, the results of the proposed segmentation algorithm are evaluated for some images taken from real environments of potato industries and farms.
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملANFIS Based Color Image Segmentation for Extraction of Salient Features: A Design Approach
Image segmentation is very essential and critical to image processing and pattern recognition. In this paper, a technique for color image segmentation called ‘Adaptive Neuro-Fuzzy Color Image Segmentation (ANFIS)’ is proposed. Adaptive Neuro-Fuzzy system is used for automatic multilevel image segmentation. This system consists of multilayer perceptron (MLP) like network that performs color imag...
متن کاملSkin Color Segmentation in YCBCR Color Space with Adaptive Fuzzy Neural Network (Anfis)
In this paper, an efficient and accurate method for human color skin recognition in color images with different light intensity will proposed .first we transform inputted color image from RGB color space to YCBCR color space and then accurate and appropriate decision on that if it is in human color skin or not will be adopted according to YCBCR color space using fuzzy, adaptive fuzzy neural net...
متن کاملAdaptive Color Image Segmentation Using Fuzzy Min-Max Clustering
This paper proposes a novel system for color image segmentation called “Adaptive color image segmentation using fuzzy min-max clustering (ACISFMC)”. The present work is an application of Simpson’s fuzzy min-max neural network (FMMN) clustering algorithm. ACISFMC uses a multilayer perceptron (MLP) like network which perform color image segmentation using multilevel thresholding. Threshold values...
متن کاملColor Image Segmentation with CLPSO-based Fuzzy
A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live to...
متن کامل